198,977 research outputs found

    Dimensionality Reduction Mappings

    Get PDF
    A wealth of powerful dimensionality reduction methods has been established which can be used for data visualization and preprocessing. These are accompanied by formal evaluation schemes, which allow a quantitative evaluation along general principles and which even lead to further visualization schemes based on these objectives. Most methods, however, provide a mapping of a priorly given finite set of points only, requiring additional steps for out-of-sample extensions. We propose a general view on dimensionality reduction based on the concept of cost functions, and, based on this general principle, extend dimensionality reduction to explicit mappings of the data manifold. This offers simple out-of-sample extensions. Further, it opens a way towards a theory of data visualization taking the perspective of its generalization ability to new data points. We demonstrate the approach based on a simple global linear mapping as well as prototype-based local linear mappings.

    Spectral Dimensionality Reduction

    Get PDF
    In this paper, we study and put under a common framework a number of non-linear dimensionality reduction methods, such as Locally Linear Embedding, Isomap, Laplacian Eigenmaps and kernel PCA, which are based on performing an eigen-decomposition (hence the name 'spectral'). That framework also includes classical methods such as PCA and metric multidimensional scaling (MDS). It also includes the data transformation step used in spectral clustering. We show that in all of these cases the learning algorithm estimates the principal eigenfunctions of an operator that depends on the unknown data density and on a kernel that is not necessarily positive semi-definite. This helps to generalize some of these algorithms so as to predict an embedding for out-of-sample examples without having to retrain the model. It also makes it more transparent what these algorithm are minimizing on the empirical data and gives a corresponding notion of generalization error. Dans cet article, nous étudions et développons un cadre unifié pour un certain nombre de méthodes non linéaires de réduction de dimensionalité, telles que LLE, Isomap, LE (Laplacian Eigenmap) et ACP à noyaux, qui font de la décomposition en valeurs propres (d'où le nom "spectral"). Ce cadre inclut également des méthodes classiques telles que l'ACP et l'échelonnage multidimensionnel métrique (MDS). Il inclut aussi l'étape de transformation de données utilisée dans l'agrégation spectrale. Nous montrons que, dans tous les cas, l'algorithme d'apprentissage estime les fonctions propres principales d'un opérateur qui dépend de la densité inconnue de données et d'un noyau qui n'est pas nécessairement positif semi-défini. Ce cadre aide à généraliser certains modèles pour prédire les coordonnées des exemples hors-échantillons sans avoir à réentraîner le modèle. Il aide également à rendre plus transparent ce que ces algorithmes minimisent sur les données empiriques et donne une notion correspondante d'erreur de généralisation.non-parametric models, non-linear dimensionality reduction, kernel models, modèles non paramétriques, réduction de dimensionalité non linéaire, modèles à noyau

    Isometric sketching of any set via the Restricted Isometry Property

    Full text link
    In this paper we show that for the purposes of dimensionality reduction certain class of structured random matrices behave similarly to random Gaussian matrices. This class includes several matrices for which matrix-vector multiply can be computed in log-linear time, providing efficient dimensionality reduction of general sets. In particular, we show that using such matrices any set from high dimensions can be embedded into lower dimensions with near optimal distortion. We obtain our results by connecting dimensionality reduction of any set to dimensionality reduction of sparse vectors via a chaining argument.Comment: 17 page

    Dimensionality reduction with image data

    Get PDF
    A common objective in image analysis is dimensionality reduction. The most common often used data-exploratory technique with this objective is principal component analysis. We propose a new method based on the projection of the images as matrices after a Procrustes rotation and show that it leads to a better reconstruction of images

    Spectral dimensionality reduction for HMMs

    Get PDF
    Hidden Markov Models (HMMs) can be accurately approximated using co-occurrence frequencies of pairs and triples of observations by using a fast spectral method in contrast to the usual slow methods like EM or Gibbs sampling. We provide a new spectral method which significantly reduces the number of model parameters that need to be estimated, and generates a sample complexity that does not depend on the size of the observation vocabulary. We present an elementary proof giving bounds on the relative accuracy of probability estimates from our model. (Correlaries show our bounds can be weakened to provide either L1 bounds or KL bounds which provide easier direct comparisons to previous work.) Our theorem uses conditions that are checkable from the data, instead of putting conditions on the unobservable Markov transition matrix

    Non-Redundant Spectral Dimensionality Reduction

    Full text link
    Spectral dimensionality reduction algorithms are widely used in numerous domains, including for recognition, segmentation, tracking and visualization. However, despite their popularity, these algorithms suffer from a major limitation known as the "repeated Eigen-directions" phenomenon. That is, many of the embedding coordinates they produce typically capture the same direction along the data manifold. This leads to redundant and inefficient representations that do not reveal the true intrinsic dimensionality of the data. In this paper, we propose a general method for avoiding redundancy in spectral algorithms. Our approach relies on replacing the orthogonality constraints underlying those methods by unpredictability constraints. Specifically, we require that each embedding coordinate be unpredictable (in the statistical sense) from all previous ones. We prove that these constraints necessarily prevent redundancy, and provide a simple technique to incorporate them into existing methods. As we illustrate on challenging high-dimensional scenarios, our approach produces significantly more informative and compact representations, which improve visualization and classification tasks
    corecore